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Abstract
The multipole moments and multipole–multipole interactions of uniformly
polarized particles have been calculated based on the fundamental theory of
electrostatics. As the polarization of the particles is uniform, only surface
charges are considered. The polarization may have its origin in magnetization
or ferroelectricity or be an intrinsic property of molecules. It is demonstrated
that, depending on the geometry of the particles, the higher order interactions
can be comparable to or even stronger than the dipole–dipole interaction. The
higher order moments give rise to an additional energy contribution in arrays
of close packed polarized nanoparticles. The influence of particle aspect ratios
as well as array periodicity is discussed.

1. Introduction

Miniaturization plays an important role in modern physics and chemistry as it gives access
to new phenomena that can be used in technical applications. It is desirable to increase
the density of clusters, dots and micelles, which is correlated with a decrease of their size.
Often the particles are polarized or charged. In that case the particles interact. The strength
of the interaction increases with decreasing interparticle distance and can be described by
means of the multipole expansion. A general calculus for multipole moments can be found
in textbooks [1]. However, higher order moments are only calculated to describe molecular
orbitals in physical chemistry [2]. In all other cases (magnetic arrays, ferroelectric arrays,
colloids etc) the calculations are restricted either to the pure dipole–dipole interaction between
the dots [3] or to the first multipole correction to the dipolar coupling [6, 4, 5]. The higher
order contributions have not been studied systematically as terms beyond the dipolar one are of
minor importance for special cases of zero-thickness in-plane magnetized squares [4] /discs [5].
Only that kind of particles has been addressed in the literature. However, experimentally and
industrially produced arrays consist of particles of variable geometry depending on material
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and method of preparation. Thus, a general procedure for the calculus of multipole moments
of polarized nanoparticles as a function of aspect ratio and symmetry is highly needed as the
knowledge of the interaction energy of higher order multipole moments is crucial for further
investigations on the magnetic order and magnetic phase transitions in stray field coupled
systems.

The multipole expansion may be made either in Cartesian or in spherical coordinates.
The advantage of the Cartesian expansion is that only real numbers are required. However,
each term of the expansion is a tensor. The order L of the tensor is equivalent to the order
of the expansion. The number of independent tensor components of a three-dimensional
symmetric tensor increases with the square of L, thus it is a formidable task to treat terms with
rank higher than two (quadrupole moments) [4, 6]. The spherical expansion needs complex
numbers but its complexity does not change with the order of expansion as the number of
independent components is proportional to L. So, it seems that almost any order can be
calculated within reasonable effort. However, the treatment of a planar charge distribution in
spherical coordinates leads to very complicated integrals. To avoid this difficulty we use the
spherical harmonic formalism but express it in Cartesian coordinates. In this way we define
a general procedure to calculate the multipole moments and the corresponding interaction
energies of axially symmetric particles. This symmetry class has a wide range of application,
e.g. in storage media [7–9]. We demonstrate that for prismatic particles with mirror symmetry
only multipole moments of the same symmetry are different from zero. All other multipolar
contributions are extinct. This permits us to decrease drastically the computational efforts for
calculation of magnetostatic interactions in magnetic/electric arrays. For certain geometries
the interaction due to higher order moments is of the same order of magnitude as the dipolar
coupling. Hence, it must be considered in the description of order phenomena in close packed
arrays or hysteresis and switching behaviour of magnetic or ferroelectric particles.

For the sake of simplicity we restrict the discussion to particles with n-fold rotational
symmetry that are polarized parallel to the axis of symmetry or have charged base planes.
Although we discuss in this paper only axial systems with point-symmetriccharge distributions
of negative parity the theory can be easily generalized to positive parity or other geometries,
e.g. in-plane polarized discs.

2. Multipole moments of symmetric particles

The multipole moments of a charge distribution ρ(r) in spherical coordinates r = (r, θ, ϕ)

are defined by [1]

Ql m =
∫

V
dV ρ(r)Rl m(r) (1)

where the integration is performed over the volume V that encloses ρ(r), weighted by the
regular normalized spherical harmonic Rl m(r) [1] (see also (4))

Rl m(r) =
√

4π

2l + 1
r lYl m(θ, ϕ). (2)

The spherical harmonics Yl m(θ, ϕ) represent a complete set of orthogonal functions on the
sphere [10]. They are numbered by two independent parameters l and m corresponding to the
two degrees of freedom on a sphere θ and ϕ. The far-field potential is [1]

�(r) = 1

4πµ0

∞∑
l=0

l∑
m=−l

Il m(r)Q∗
l m (3)
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Figure 1. Scheme of a nanoparticle with fivefold (n-fold) symmetry. Every surface can be divided
into five (n) equivalent isosceles triangles with edge length d. The particle is polarized in the
z-direction.

(This figure is in colour only in the electronic version)

with the irregular normalized spherical harmonics

Il m(r) =
√

4π

2l + 1

Yl m(θ, ϕ)

r l+1
(4)

and Q∗
l m the complex conjugate of Ql m . The field can be determined as the negative gradient

of the potential F = −∇�. To ensure the uniqueness of the expansion, the origin of the
coordinate system must coincide with the centre of charge

rs =
∫

V dV r · |ρ(r)|∫
V dV |ρ(r)| , (5)

i.e. rs = 0; otherwise even the expansion of the potential of a point charge includes higher
order moments. The remaining freedom of rotation is handled by tensor transformation rules
for spherical harmonics given in [10].

2.1. The relationship between particle symmetry and multipole moments

Let us assume a nanoparticle with n-fold symmetry (n > 1) within the x–y-plane, which is
polarized in the z-direction (figure 1). The symmetry axis is parallel to the polarization.
The upper surface of the particle is positively charged with the surface charge density
σ(r) = µ0n · M(r) due to uncompensated dipoles, with the unit vector n perpendicular
to the surface and the magnetization vectorfield M(r). Hence, with this definition the unit
for the magnetic charge is V s and the magnetic dipole moment is measured in V s m. The
bottom charge is the mirror image of the positive charge distribution at the top of the particle.
To integrate (1) explicitly, we divide the surface into n identical triangles (figure 1). Then the
Ql m are calculated by the sum over the triangles (0 � j � n − 1) of the top and the bottom
surfaces. As the charged surfaces are planar we replace the volume charge density ρ(r) and the
volume integration (1) by the surface charge density σ(r) and an integration over the surface
element dS.

Ql m =
n−1∑
j=0

( ∫
j th top-triangle
dS |σ(r)|Rl m(r) −

∫
j th bottom-triangle
dS |σ(r)|Rl m(r)

)
. (6)

Due to the symmetry of spherical harmonics

Yl m(θ, ϕ) = (−1)l+mYl m(π − θ, ϕ) (7)
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Table 1. The multipole moments Ql m (in units of the surface charge density) up to the order
L = 7 of a particle with fourfold symmetry. All Ql m with even l vanish.

l m = 0 m = 4a,b

1 2hd2

3c hd2
(

h2

2 − d2
)

5 h5d2

8 − 5h3d4

6 + 7hd6

12 −
√

7
10

hd6

4

7 h7d2

32 − 7h5d4

16 + 49h3d6

48 − 3hd8

8

√
33
14

hd8

8 −
√

77
6

h3d6

16

a m must be zero or a multiple of 4.
b Ql −m = (−1)m Q∗

l m due to the symmetry of spherical harmonics.
c Hence, Q3 0 = 0 for h = √

2d, i.e. a cube.

the sum over the bottom triangles is incorporated into the first sum by the term (−1)l+m+1. The
azimuthal symmetry Yl m(θ, ϕ) ∝ exp(imϕ) allows us to write

Ql m =
n−1∑
j=0

∫
j th top-triangle
dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)

Ql m =
∫

one top-triangle
dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)

n−1∑
j=0

exp

(
im

2π

n
j

)

=
∫

one top-triangle
dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)nδ0,mod(m,n) (8)

where the Kronecker δ is unity for n|m or m = 0 only.
The symmetry properties of (8) lead to several conclusions. Multipole moments with

even l exist for n � 3 only and no quadrupole moment (l = 2) is allowed. If l is even
m must be odd. Except for m = 0, the smallest m is m = n as n must be a factor of m
because of the Kronecker δ. Therefore, the lowest moment with l even is (l, m) = (4, 3) for a
threefold symmetry. The first possible multipole moment with even l for a fivefold symmetry
is (l, m) = (6, 5). Additionally, all particles with even rotational symmetry do not possess
multipole moments with even l. This can be seen from the parity properties of Yl m(θ, ϕ)

P̂Yl m(θ, ϕ) := Yl m(π − θ, π + ϕ) = (−1)mYl m(θ, ϕ). (9)

If the charge distribution has a negative parity (σ(−r) = −σ(r)), which is the case for a
particle with n even, the integration reduces to

Ql m =
∫

one top-triangle
dS (1 + (−1)l+1)|σ(r)|Rl m(r) · n · δ0,mod(m,n) (10)

and l must be odd.
Tables 1 and 2 give the low order moments of a particle with fourfold and cylindrical

symmetry, respectively, as a function of the surface area (∝ d2) and the height h of the particle.
As expected the dipole moments are proportional to d2 × h. The dependence of the multipole
moments on the effective aspect ratio h/(

√
2d) of a particle with fourfold symmetry is shown in

figure 2. The functions Ql m(h, d) may cross zero. This happens for example for the octopole
moment of a cube [11] (see figure 2). In the limit of small thicknesses the octopole moment
reaches −25% of the dipole moment. This geometry corresponds to sizes of particles often used
in experimental studies [12–14]. For vertically elongated particles, such as arrays of magnetic
nanocolumns [15, 16] or liquid colloidal crystals with rod-like components [17], the magnitude
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Figure 2. (a) The low order multipole moments Ql m (normalized to Q1 0) of particles with
fourfold symmetry with height h and edge length a. For h → 0 Q3 0 reaches −25% of Q1 0.
(b) The low order multipole–multipole interaction energies E(lA, lB ) (normalized to the dipole–
dipole interaction energy E(1, 1)) of particles with fourfold symmetry with height h and edge length
a. The parameters of E(lA, lB ) specify the multipole moments lA and lB that interact (including
the sum over m A and m B).

Table 2. The multipole moments Ql m (in units of the surface charge density) up to the order
L = 7 of a particle with cylindric symmetry. All Ql m with even l vanish.

l m = 0a

1 πhd2

3 π
4 hd2(h2 − 3d2)

5 π
16 hd2(h4 − 10h2d2 + 10d4)

7 π
64 hd2(h6 − 21h4d2 + 70h2d4 − 35d6)

a m must be zero for symmetry reasons.

of the octopole moment exceeds that of the dipole moment. Thus, many experimental systems
require the consideration of higher order multipole moments while in the case of elongated
polarized objects the consideration of octopole moments is indispensable.

3. The energy contribution of multipole moments with order L � 1

Exact analytical solutions include implicitly all expansion terms. However, one cannot
distinguish between the contributions from different moments, i.e. it is impossible to assign the
formation of superstructures in an ensemble of particles to particular features of their geometry.
The calculation of the higher order multipole moments of a particle gives the possibility to
predict the behaviour induced by multipole terms solely from the knowledge of the single
particle and the array geometry. Thus, the use of higher order multipole moments is not meant
to substitute analytical solutions, but reveals a new, rather simple treatment to distinguish
symmetry effects due to single-particle properties on all length scales. The multipole moments
give an additional contribution to the magneto-static interaction. The exact interaction energy,
including all multipole terms, can be found in the literature, analytically solved for uniform
magnetized bodies with fourfold symmetry [18]. However, the expression for the potential is
very complicated and even more complex for the interaction energy.

Though the expansion of the potential of a charge distribution is straightforward, the
expansion of the interaction of two charge distributions requires a more complex derivation,
particularly in the case of intersecting charge distributions, which are included in the
sophisticated treatment of that problem [19]. The formulae given in [19], however, demand a
transformation of the coordinate system for each pair interaction. We focus on the most general
formulation for non-intersecting charge distributions [2] to obtain results that are independent
of the coordinate system.
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Table 3. Multipole–multipole interaction energies (in units of σ 2(4πµ−1
0 )) of two particles with

fourfold symmetry. The particles have an edge length a = √
2d and height h. The edges are

parallel to the coordinate axes and the distance vector between the particles is RAB = R · ex .
Every entry of the table represents an interaction of the moment Q A

lA
with QB

lB
. The index m is

omitted as the summation over m is carried out. As the table is symmetric, doubled entries are left
blank for clarity.

Q A
1 Q A

3 Q A
5

QB
1

4h2d4

R3 − 3h2d4(h2 − 2d2)

2R5
h2d4(15h4 − 100h2d2 + 28d4)

32R7

QB
3

25d4(h3 − 2hd2)2

16R7 − 7h2d4(105h6 − 910h4d2 + 1692h2d4 − 584d6)

768R9

QB
5

7h2d4(567h8 − 7560h6d2 + 28776h4d4 − 23840h2d6 + 9328d8)

4096R11

If RAB is the distance vector from charge distribution A with multipole moments Q A to
charge distribution B with multipole moments QB the interaction energy is

E AB = 1

4πµ0

∑
lA lB m AmB

TlAlB m AmB (RAB)Q A
lA m A

QB
lB mB

(11)

with the geometric interaction tensor TlAlB m AmB (RAB) [1]

TlAlB m AmB (RAB) = (−1)−lB I ∗
lA +lB m A+mB

(RAB)

×
√

(lA + lB − m A − m B)!

(lA − m A)!(lB − m B)!

(lA + lB + m A + m B)!

(lA + m A)!(lB + m B)!
. (12)

The dependence on the distance is given by I ∗
lA +lB m A+mB

(RAB). Hence, it follows from (12)
that the energy contribution from the moments Q A

lA
and QB

lB
of order lA and lb respectively

decreases with increasing distance as R−λ
AB and λ = lA + lB + 1. Consequently, higher order

multipole moments are important if R � d . The infinite series converges to the exact solution.
The multipole–multipole interaction energies for two particles with square base of edge

length a and height h (edges parallel to the coordinate axes) with distance vector RAB = R ·ex

have been calculated and are given in table 3. The multipole–multipole interaction energies
as a function of the particle aspect ratio and R = 1.2a are shown in figure 3. An interparticle
distance of R = 1.2a is in the range of experimental values (e.g. R = 1.1a in [20] and
R = 1.4a in [21]). For small thickness h the dipole–octopole energy is about 26% and the
octopole–octopole interaction is close to 19% of the dipole–dipole energy. As the octopole
moment vanishes for a cube, the dipole–octopole interaction energy crosses zero at h/a = 1,
while the octopole–octopole interaction energy has its minimum value, i.e. zero. For vertically
elongated particles the multipole–multipole interactions are even stronger. The energy of
multipole–multipole interactions between two particles with fourfold symmetry as a function
of the interparticle distance R is presented in figure 3. One sees that for h/a = 0.4 and R = 2a
the pure dipolar approximation gives only 80% of the total energy. Obviously, for R � 2a
the octopole moment must be considered. For R � 1.2a the 25-pole brings further important
energy corrections. Hence, our quantitative results can be directly applied to analyse the
magnetostatic interactions between square dots of the patterned Co70Cr18Pt12 perpendicular
media [21].

The interaction energies that correspond to the geometry and material of [21] are calculated
in table 4. For R = 100 nm the interaction energy between two particles of size of
70 × 70 × 20 nm3 due to the octopole moments is 17% of the dipole–dipole energy. For
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Figure 3. The sums of multipole–multipole energies up to order L = 1, 3, 5 normalized to the
total energy Etot as function of the interparticle distance R. The aspect ratio is h/a = 0.4.

Table 4. The temperature T of the multipole–multipole interaction energies E = kBT of two
particles with fourfold symmetry, where kB is the Boltzmann constant. The particles have an edge
length a = 70 nm and height h = 20 nm. The edges are parallel to the coordinate axes and the
distance vector between the particles is RAB = (100 nm)ex . Every entry in the table represents
an interaction of the moment Q A

lA
with QB

lB
. The index m is omitted as the summation over m is

carried out. For comparison the energy of 1/2µ0 M2
S V/kB = 9.44×105 K, where V is the particle

volume and MS = 4.60 × 105 A m−1. The numbers in brackets correspond to the values for an
infinite square lattice. As the table is symmetric, doubled entries are left blank for clarity.

Q A
1 Q A

3 Q A
5

QB
1 14 719 K (1.33 × 105 K) 2484 K (0.13 × 105 K) 84 K (369 K)

QB
3 1165 K (5150 K) 164 K (685 K)

QB
5 140 K (572 K)

an infinite square lattice the octopolar energy per particle exceeds 13.5% of the dipolar one.
The decrease of the octopolar contribution to the total magnetostatic energy density is due to
the faster drop of its strength with the distance. Indeed, the dipolar lattice sum for a square
lattice is S(1, 0, 1; 3/2) = 4β(3/2)ζ(3/2) ≈ 9.034,1 i.e. in an infinite lattice the field on one
lattice site is approximately nine times the field due to one nearest neighbour while for the
dipole–octopole interaction the factor is S(1, 0, 1; 5/2) ≈ 5.01; this equals 56% of the factor
for the dipolar interaction. Nevertheless, even a 13.5% effect may significantly change critical
properties of an array. For example, a critical temperature Tc at which an array becomes ordered
due to dipolar plus octopolar interactions will increase by ≈13.5% comparably to a pure dipolar
case. Hence, in order to allow for independent particle switching for the perpendicular memory
applications one should increase R beyond 100 nm.

In the case of the system from [21] the dipolar interaction alone can induce a long-range
order in the array for R < 150 nm as the strength of the dipole–dipole coupling E(1, 1) exceeds
room temperature (see table 4). A more interesting situation arises for the case of dots with
smaller dimensions 30 × 30 × 4 nm3. In this case the dipole moments of dots decrease and a
long-range dipolar ordering cannot be stabilized in an array even for very small interparticle
distance of R = 40 nm (E(1, 1) � 300 K). The octopole–octopole and dipole–octopole
contributions increase the total magnetostatic energy by ≈30% so that the total magnetostatic
energy increases to almost 400 K. This is well above the room temperature. Hence, in a certain
temperature range a long-range magnetic order in that case can be established. In contrast to
the previous situation, however, it is only ensured via higher order magnetostatic contributions.

1 Where S(a, b, c; s) = ∑′
i j (ai2 + bi j + cj2)−s excluding i = j = 0 and β(z) and ζ(z) are the Dirichlet beta

function and the Riemann zeta function, respectively [22].
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Table 5. The same as in table 4, but for particles with an edge length a = 8 nm and height
h = 2 nm. The distance vector between the particles is RAB = (9 nm)ex . In this case the
self-energy is 1/2µ0 M2

S V/kB = 1233 K.

Q A
1 Q A

3 Q A
5

QB
1 34.4 K (311.2 K) 9.6 K (48.7 K) 0.7 K (2.9 K)

QB
3 7.4 K (32.7 K) 1.9 K (7.8 K)

QB
5 2.4 K (9.9 K)

The third interesting situation arises when the particles have dimensions within the
superparamagnetic regime, e.g. 8 × 8 × 2 nm3 for a material with a weak magnetocrystalline
anisotropy. Magnetic moments in those dots are strongly coupled by the exchange interaction
and can still be described as magnetized objects. In contrast to the previous situation, however,
the anisotropy energy per particle is also comparable with the room temperature and the dots
are dynamically unstable. The dipolar energy is comparable with the room temperature (see
table 5) as in the previous case. The octopole–octopole and dipole–octopole contributions
increase the total magnetostatic energy in an infinite square lattice with period of R = 9 nm by
≈26%. Hence, the multipole–multipole interactions may bring the thermal stability into the
system even in the superparamagnetic regime. This result is in accordance with a recent
experimental study [23] on close-packed Co, NiFe and CoFe/Cu/NiFe magnetic particle
arrays where a stabilization of magnetic configuration against superparamagnetism for small
interparticle distances has been found.

Hence, higher order multipolar terms must be considered in systems of two particles as
well as infinite lattices if the distance between the particles is of the same order of magnitude
as their diameter (R � d). Calculations of higher order magnetostatic contributions for many
experimental situations can be easily made on the basis of table 3.

4. Summary

In conclusion we have developed a procedure to calculate the multipole moments up to
any desired order as well as the correlated interaction energies of axially polarized prism-
shaped particles including cylinders. The theory is scale invariant, but as we treat single-
domain particles, it is of special interest in the nanoscale regime. We demonstrate that
prismatic particles with mirror symmetry do not posses multipole moments of even symmetry
(quadrupoles etc). Only the moments of odd symmetry (octopole etc) exist. Depending
on the geometry and the interparticle distance, the higher order moments can exceed the
dipole moment. Therefore, their contribution to the total energy of an array must be
included in the case of close packed nanoparticles and the treatment solely by the dipole–
dipole approximation is questionable. Higher order contributions may appear as additional
anisotropies and cause anisotropy induced orientational order in colloids or liquid crystals. A
shift of the superparamagnetic/super(anti)ferromagnetic transition might also be possible due
to higher order multipole moments. This will be the subject of future investigations.
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